Indian Statistical Institute, Bangalore B. Math (II) Second Semester 2017-18 Backpaper Examination : Statistics (II) Maximum Score 40

Date: 14-06-2018

Duration: 3 Hours

- 1. There are 8 different eateries in the neighborhood of ISI. An eatery is open on any particular day with probability θ , $0 < \theta < 1$. For reasons of proximity and convenience etc., Partha visits either eatery 1 or eatery 2. Partha is interested in knowing i) $\tau_1(\theta)$, the probability that either eatery 1 is open or eatery 2 is open on any given day and ii) $\tau_2(\theta)$, the probability that exactly one of the eateries 1 and 2 is open on a given day. Let $X_i = 1(0)$ if the *ith* eatery is open (closed) on a given day, $1 \le i \le 8$. Let $X_1, X_2, ..., X_8$ be the random sample taken on some day indicating whether various of the eateries were open or not.
 - (a) State clearly the assumptions you make.
 - (b) Find $\tau_1(\theta)$ and $\tau_2(\theta)$.
 - (c) Show that $T = \sum_{i=1}^{8} X_i$ is a minimal sufficient statistic for θ .
 - (d) Is $T = \sum_{i=1}^{8} X_i$ complete as well? Substantiate.
 - (e) Find Fisher information $I(\theta)$ contained in the sample $X_1, X_2, ..., X_8$ about θ .
 - (f) Find an unbiased estimator for $\tau_2(\theta)$. Hence or otherwise obtain Uniformly Minimum Variance Unbiased Estimator (UMVUE) for $\tau_2(\theta)$.

[2+2+3+4+3+6=20]

2. A drilling machine is used to make holes in metal sheets using shafts of different diametric specifications. Let θ be the mean diameter, measured in mm, of the holes drilled using one such shaft. However, the mean diametric specification θ is unknown. Let $X_1, X_2, ..., X_n$ denote the diameters of n holes all drilled using the given shaft. The variability σ_0^2 , in the diameters of holes drilled, is an indicator of the quality of the drilling machine. Based on the prolonged use of the drilling machine we assume that σ_0^2 is known. Stating clearly the assumptions you make, derive likelihood ratio test (LRT) at level of significance $\alpha = 0.05$, for testing the hypothesis

$$H_0: \theta \leq 2 \ versus \ H_1: \theta > 2$$

How would you report the p - value?

[2+10+2=14]

3. This amusing classical example is from von Bortkiewicz (1898). The number of fatalities that resulted from being kicked by a horse was recorded for 10 corps of Prussian cavalry over a period of 20 years, giving 200 corps-years worth of data. These data are displayed in the following table. The first column of the table gives the number of deaths per year, ranging from 0 to 4. The second column lists how many times that number of deaths was observed.

No. of Deaths	Observed
per Year	Frequency
0	109
1	65
2	22
3	3
4	1

Thus, for example, in 65 of the 200 corps-years, there was one death.

Carry out χ^2 goodness of fit test to test the hypothesis, at level of significance $\alpha = 0.05$, that the data come from Poisson distribution. Also report the p - value. [12]

4. Let $X_n, Y_n, n \ge 1$ be sequences of random variables and X be a random variable, all defined on the same probability space, such that $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{p} c$, where c is a finite constant. Prove that $X_n + Y_n \xrightarrow{d} X + c$. [12]